$R_{\rm int} = 0.036$

18982 measured reflections

4753 independent reflections

3600 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato- $\kappa^2 N, O$ zincate(II) methanol solvate

Elham Sattarzadeh,^a Gholamhossein Mohammadnezhad,^a Mostafa M. Amini^a and Seik Weng Ng^{b*}

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 15 April 2009; accepted 16 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 17.2.

The reaction of zinc chloride and 2-methyl-8-hydroxyquinoline in methanol yielded the title monosolvated salt, $(C_{10}H_{10}NO)[ZnCl_2(C_{10}H_8NO)]\cdot CH_3OH$, which has the Zn atom within a distorted Cl₂NO tetrahedral coordination geometry. Supramolecular chains feature in the crystal structure, comprising all components of the structure stabilized by a combination of O-H···O, N-H···O and O-H···Cl hydrogen bonding.

Related literature

Unlike 8-hydroxyquinoline, which yields a large number of metal derivatives, 2-methyl-8-hydroxyquinoline forms only a small number of metal chelates. Besides a related acetate salt (Sattarzadeh et al., 2009), there is only one crystal structure report of another zinc derivative; for aquabis(2-methylquinolin-8-ato)zinc, see: da Silva et al. (2007).

Experimental

Crystal data

$(C_{10}H_{10}NO)[ZnCl_2(C_{10}H_8NO)]$	$\beta = 105.48 \ (1)^{\circ}$
CH ₄ O	V = 2072.15 (7) Å ³
$M_r = 486.68$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.0717 (2) Å	$\mu = 1.47 \text{ mm}^{-1}$
b = 13.7886 (3) Å	$T = 100 { m K}$
c = 15.4828 (3) Å	$0.32 \times 0.12 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.651, T_{\max} = 0.892$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.108$	independent and constrained
S = 1.02	refinement
4753 reflections	$\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$
277 parameters	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
02-H2O···O1	0.84 (1)	1.70(1)	2.534 (3)	177 (4)
O3−H3O···Cl1 ⁱ	0.84 (1)	2.47 (3)	3.239 (4)	153 (5)
$N2-H2N\cdots O3$	0.88 (1)	1.87 (2)	2.727 (4)	163 (3)

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2423).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sattarzadeh, E., Mohammadnezad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m554.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Silva, L. E. da, Joussef, A. C., Rebelo, R. A., Foro, S. & Schmidt, B. (2007). Acta Cryst. E63, m129-m131.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, m553 [doi:10.1107/S1600536809014202]

8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato- $\kappa^2 N$,O)zincate(II) methanol solvate

E. Sattarzadeh, G. Mohammadnezhad, M. M. Amini and S. W. Ng

Experimental

Zinc chloride (0.10 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The O–H and N–H hydrogen atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and N–H 0.88±01 Å; their temperature factors were freely refined.

The final difference Fourier map had a large peak/deep hole in the vicinity of the O3 atom.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $[C_{10}H_{10}NO][Zn(C_{10}H_8NO)Cl_2]$ CH₃OH; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius.

8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato- $\kappa^2 N$,O)zincate(II) methanol solvate

Crystal data	
--------------	--

$F_{000} = 1000$
$D_{\rm x} = 1.560 {\rm ~Mg} {\rm ~m}^{-3}$
Mo K α radiation $\lambda = 0.71073$ Å
Cell parameters from 4908 reflections
$\theta = 2.6 - 27.1^{\circ}$
$\mu = 1.47 \text{ mm}^{-1}$
T = 100 K
Block, yellow
$0.32 \times 0.12 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer	4753 independent reflections
Radiation source: fine-focus sealed tube	3600 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 100 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.651, T_{\max} = 0.892$	$k = -17 \rightarrow 17$
18982 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_0^2) + (0.0493P)^2 + 2.8684P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
4753 reflections	$\Delta \rho_{max} = 1.08 \text{ e } \text{\AA}^{-3}$
277 parameters	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.50382 (3)	0.63261 (3)	0.23689 (2)	0.02655 (11)
Cl1	0.48941 (8)	0.76378 (6)	0.31836 (5)	0.03149 (18)
C12	0.39683 (8)	0.50528 (6)	0.27699 (5)	0.03503 (19)
01	0.6980 (2)	0.60686 (17)	0.23887 (13)	0.0318 (5)
O2	0.9135 (2)	0.63848 (15)	0.36428 (13)	0.0258 (4)
H2O	0.843 (3)	0.626 (3)	0.3225 (19)	0.054 (13)*
O3	1.1916 (3)	0.6985 (4)	0.3410 (2)	0.1114 (18)
H3O	1.2770 (14)	0.706 (5)	0.353 (4)	0.11 (2)*
N1	0.4760 (2)	0.63643 (17)	0.10133 (15)	0.0232 (5)
N2	1.1439 (2)	0.64419 (17)	0.49938 (16)	0.0239 (5)
H2N	1.143 (4)	0.657 (3)	0.4435 (10)	0.040 (10)*
C1	0.7143 (3)	0.6004 (2)	0.15652 (19)	0.0257 (6)
C2	0.8383 (3)	0.5781 (2)	0.1389 (2)	0.0345 (7)
H2	0.9178	0.5676	0.1872	0.041*
C3	0.8481 (3)	0.5708 (2)	0.0502 (2)	0.0363 (8)

H3	0.9347	0.5557	0.0401	0.044*
C4	0.7372 (4)	0.5847 (2)	-0.0217 (2)	0.0344 (7)
H4	0.7466	0.5793	-0.0810	0.041*
C5	0.6079 (3)	0.6075 (2)	-0.00683 (19)	0.0280 (6)
C6	0.5975 (3)	0.6156 (2)	0.08206 (18)	0.0238 (6)
C7	0.4857 (4)	0.6220 (2)	-0.0757 (2)	0.0324 (7)
H7	0.4873	0.6172	-0.1366	0.039*
C8	0.3656 (3)	0.6428 (2)	-0.05527 (19)	0.0303 (7)
H8	0.2839	0.6530	-0.1020	0.036*
C9	0.3619 (3)	0.6491 (2)	0.03512 (19)	0.0259 (6)
C10	0.2318 (3)	0.6695 (2)	0.0599 (2)	0.0322 (7)
H10A	0.2445	0.7264	0.0992	0.048*
H10B	0.2074	0.6134	0.0914	0.048*
H10C	0.1577	0.6823	0.0056	0.048*
C11	0.8990 (3)	0.61926 (19)	0.44627 (18)	0.0211 (5)
C12	0.7783 (3)	0.5956 (2)	0.46570 (19)	0.0254 (6)
H12	0.6953	0.5926	0.4189	0.031*
C13	0.7759 (3)	0.5758 (2)	0.5544 (2)	0.0267 (6)
H13	0.6909	0.5594	0.5664	0.032*
C14	0.8927 (3)	0.5795 (2)	0.62372 (19)	0.0279 (6)
H14	0.8887	0.5657	0.6831	0.033*
C15	1.0188 (3)	0.6040(2)	0.60665 (18)	0.0241 (6)
C16	1.0214 (3)	0.62310 (19)	0.51737 (18)	0.0218 (6)
C17	1.1463 (3)	0.6076 (2)	0.6733 (2)	0.0300 (7)
H17	1.1488	0.5961	0.7342	0.036*
C18	1.2650 (3)	0.6276 (2)	0.6509 (2)	0.0309 (7)
H18	1.3496	0.6293	0.6964	0.037*
C19	1.2646 (3)	0.6457 (2)	0.5617 (2)	0.0284 (6)
C20	1.3919 (3)	0.6644 (3)	0.5335 (2)	0.0381 (8)
H20A	1.3932	0.6227	0.4825	0.057*
H20B	1.4726	0.6504	0.5834	0.057*
H20C	1.3940	0.7326	0.5158	0.057*
C21	1.1182 (4)	0.7302 (3)	0.2615 (2)	0.0478 (9)
H21C	1.1577	0.7911	0.2471	0.072*
H21B	1.0228	0.7413	0.2632	0.072*
H21A	1.1200	0.6817	0.2156	0.072*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02484 (18)	0.0370 (2)	0.01749 (17)	-0.00010 (14)	0.00511 (13)	0.00387 (14)
Cl1	0.0333 (4)	0.0367 (4)	0.0238 (3)	-0.0047 (3)	0.0066 (3)	-0.0003 (3)
Cl2	0.0401 (4)	0.0349 (4)	0.0342 (4)	-0.0009 (3)	0.0170 (3)	0.0076 (3)
O1	0.0251 (11)	0.0528 (14)	0.0170 (10)	-0.0012 (10)	0.0047 (8)	0.0001 (9)
O2	0.0260 (10)	0.0327 (11)	0.0173 (10)	-0.0003 (9)	0.0032 (8)	0.0002 (8)
O3	0.0368 (18)	0.240 (5)	0.063 (2)	0.040 (2)	0.0233 (16)	0.091 (3)
N1	0.0269 (12)	0.0231 (12)	0.0180 (11)	-0.0054 (10)	0.0029 (9)	0.0023 (9)
N2	0.0252 (12)	0.0233 (12)	0.0219 (12)	0.0037 (10)	0.0037 (10)	0.0026 (10)

supplementary materials

C1	0.0268 (15)	0.0291 (15)	0.0212 (14)	-0.0070 (12)	0.0063 (11)	-0.0022 (11)
C2	0.0294 (16)	0.0411 (19)	0.0340 (17)	-0.0086 (14)	0.0100 (13)	-0.0070 (14)
C3	0.0348 (18)	0.0404 (19)	0.0404 (19)	-0.0108 (14)	0.0216 (15)	-0.0121 (15)
C4	0.048 (2)	0.0317 (17)	0.0290 (16)	-0.0104 (15)	0.0197 (15)	-0.0057 (13)
C5	0.0413 (17)	0.0217 (14)	0.0222 (14)	-0.0087 (12)	0.0108 (13)	0.0003 (11)
C6	0.0286 (15)	0.0237 (14)	0.0189 (13)	-0.0073 (11)	0.0062 (11)	-0.0001 (10)
C7	0.053 (2)	0.0247 (15)	0.0175 (14)	-0.0061 (14)	0.0055 (13)	-0.0002 (11)
C8	0.0424 (18)	0.0250 (15)	0.0162 (13)	-0.0023 (13)	-0.0050 (12)	0.0019 (11)
C9	0.0306 (15)	0.0206 (14)	0.0230 (14)	-0.0036 (11)	0.0009 (12)	0.0017 (11)
C10	0.0299 (16)	0.0333 (16)	0.0288 (16)	0.0019 (13)	-0.0001 (13)	0.0029 (13)
C11	0.0276 (14)	0.0176 (13)	0.0170 (12)	0.0024 (11)	0.0041 (11)	0.0006 (10)
C12	0.0271 (15)	0.0254 (14)	0.0227 (14)	0.0006 (11)	0.0048 (12)	-0.0022 (11)
C13	0.0295 (15)	0.0253 (15)	0.0281 (15)	0.0009 (12)	0.0123 (12)	0.0011 (12)
C14	0.0379 (17)	0.0252 (15)	0.0210 (14)	0.0042 (13)	0.0086 (12)	0.0017 (11)
C15	0.0306 (15)	0.0196 (13)	0.0209 (14)	0.0044 (11)	0.0049 (11)	-0.0026 (11)
C16	0.0266 (14)	0.0181 (13)	0.0199 (13)	0.0033 (11)	0.0047 (11)	-0.0005 (10)
C17	0.0380 (17)	0.0286 (16)	0.0198 (14)	0.0054 (13)	0.0016 (12)	-0.0013 (12)
C18	0.0282 (15)	0.0321 (16)	0.0260 (15)	0.0031 (13)	-0.0040 (12)	-0.0026 (12)
C19	0.0274 (15)	0.0230 (15)	0.0307 (16)	0.0033 (12)	0.0005 (12)	0.0000 (12)
C20	0.0264 (16)	0.0411 (19)	0.043 (2)	-0.0007 (14)	0.0029 (14)	0.0084 (15)
C21	0.048 (2)	0.057 (2)	0.040 (2)	-0.0010 (18)	0.0137 (17)	0.0023 (18)

Geometric parameters (Å, °)

Zn1—N1	2.043 (2)	C8—H8	0.9500
Zn1—O1	1.980 (2)	C9—C10	1.488 (4)
Zn1—Cl1	2.2318 (8)	C10—H10A	0.9800
Zn1—Cl2	2.2331 (8)	C10—H10B	0.9800
O1—C1	1.331 (3)	C10—H10C	0.9800
O2—C11	1.342 (3)	C11—C12	1.368 (4)
O2—H2O	0.841 (10)	C11—C16	1.418 (4)
O3—C21	1.329 (5)	C12—C13	1.407 (4)
O3—H3O	0.836 (10)	С12—Н12	0.9500
N1—C9	1.332 (4)	C13—C14	1.365 (4)
N1—C6	1.365 (4)	C13—H13	0.9500
N2—C19	1.335 (4)	C14—C15	1.406 (4)
N2—C16	1.367 (4)	C14—H14	0.9500
N2—H2N	0.881 (10)	C15—C16	1.414 (4)
C1—C2	1.382 (4)	C15—C17	1.417 (4)
C1—C6	1.426 (4)	C17—C18	1.359 (5)
С2—С3	1.406 (4)	C17—H17	0.9500
С2—Н2	0.9500	C18—C19	1.402 (4)
C3—C4	1.364 (5)	C18—H18	0.9500
С3—Н3	0.9500	C19—C20	1.484 (4)
C4—C5	1.417 (5)	C20—H20A	0.9800
C4—H4	0.9500	C20—H20B	0.9800
C5—C7	1.411 (4)	C20—H20C	0.9800
C5—C6	1.412 (4)	C21—H21C	0.9800
С7—С8	1.360 (5)	C21—H21B	0.9800

С7—Н7	0.9500	C21—H21A	0.9800
С8—С9	1.413 (4)		
01—Zn1—N1	83.36 (9)	H10A—C10—H10B	109.5
O1—Zn1—Cl1	110.46 (7)	C9—C10—H10C	109.5
N1—Zn1—Cl1	123.24 (7)	H10A—C10—H10C	109.5
O1—Zn1—Cl2	113.75 (7)	H10B—C10—H10C	109.5
N1—Zn1—Cl2	111.22 (7)	O2—C11—C12	125.6 (3)
Cl1—Zn1—Cl2	111.78 (3)	O2—C11—C16	115.8 (2)
C1	111.79 (18)	C12—C11—C16	118.5 (3)
С11—О2—Н2О	114 (3)	C11—C12—C13	120.6 (3)
С21—О3—НЗО	117 (4)	C11—C12—H12	119.7
C9—N1—C6	119.9 (2)	C13—C12—H12	119.7
C9—N1—Zn1	130.4 (2)	C14—C13—C12	121.6 (3)
C6—N1—Zn1	109.52 (18)	C14—C13—H13	119.2
C19—N2—C16	123.6 (3)	C12—C13—H13	119.2
C19—N2—H2N	118 (2)	C13—C14—C15	119.6 (3)
C16—N2—H2N	118 (2)	C13—C14—H14	120.2
01-C1-C2	123 6 (3)	C15—C14—H14	120.2
01 - C1 - C6	118 6 (3)	C14-C15-C16	118 8 (3)
$C^2 - C^1 - C^6$	117.8 (3)	C14-C15-C17	124 1 (3)
C1 - C2 - C3	120.7(3)	C16-C15-C17	1170(3)
C1 - C2 - H2	119.6	N2-C16-C15	119.5 (3)
C3 - C2 - H2	119.6	$N_2 - C_{16} - C_{11}$	119.7 (2)
C4 - C3 - C2	122.2 (3)	C_{15} $-C_{16}$ $-C_{11}$	120.9(3)
C4—C3—H3	118.9	$C_{18} - C_{17} - C_{15}$	120.5(3) 120.7(3)
C2-C3-H3	118.9	C18—C17—H17	119.7
$C_{3} - C_{4} - C_{5}$	119.0 (3)	C15-C17-H17	119.7
C3—C4—H4	120.5	C_{17} C_{18} C_{19}	121.0(3)
C5—C4—H4	120.5	C17 - C18 - H18	119.5
C7—C5—C6	116.7 (3)	C19-C18-H18	119.5
C7—C5—C4	124 2 (3)	N2-C19-C18	118.1 (3)
C6-C5-C4	121.2(3) 1191(3)	$N_2 - C_{19} - C_{20}$	118.8 (3)
N1-C6-C5	122.2(3)	$C_{18} - C_{19} - C_{20}$	1230(3)
N1-C6-C1	1166(2)	C19—C20—H20A	109.5
C5-C6-C1	121.1(3)	C19—C20—H20B	109.5
C8-C7-C5	120 3 (3)	H20A—C20—H20B	109.5
С8—С7—Н7	119.8	C19—C20—H20C	109.5
С5—С7—Н7	119.8	H20A-C20-H20C	109.5
C7 - C8 - C9	120.2 (3)	H20B—C20—H20C	109.5
C7—C8—H8	119.9	03-C21-H21C	109.5
C9-C8-H8	119.9	03 - C21 - H21B	109.5
N1-C9-C8	120.6 (3)	$H_{21}C$ C_{21} $H_{21}B$	109.5
N1-C9-C10	120.0(3) 117.7(3)	03-C21-H21A	109.5
(8-(9-(10)))	121.7(3)	$H_{21}C_{-C_{21}}H_{21}A$	109.5
C9-C10-H10A	109 5	H218 - C21 - H21A	109.5
C9-C10-H10R	109.5	11210 021 11217	107.5
N1 $7_{\rm m}1$ 01 01	2.8 (2)		0 5 (4)
NI - ZNI - OI - OI	-2.8 (2)	C_{-}	-0.5 (4)
CII - ZII - OI - CI	-125.81 (18)	C6—N1—C9—C8	-1.0 (4)

supplementary materials

Cl2—Zn1—O1—C1	107.55 (19)	Zn1—N1—C9—C8	-175.8 (2)
O1—Zn1—N1—C9	178.1 (3)	C6—N1—C9—C10	178.7 (3)
Cl1—Zn1—N1—C9	-71.7 (3)	Zn1—N1—C9—C10	3.8 (4)
Cl2—Zn1—N1—C9	65.2 (3)	C7—C8—C9—N1	1.0 (4)
O1—Zn1—N1—C6	2.88 (18)	C7—C8—C9—C10	-178.6 (3)
Cl1—Zn1—N1—C6	113.03 (17)	O2-C11-C12-C13	179.2 (3)
Cl2—Zn1—N1—C6	-110.05 (17)	C16-C11-C12-C13	0.1 (4)
Zn1—O1—C1—C2	-176.7 (3)	C11—C12—C13—C14	0.1 (4)
Zn1—O1—C1—C6	2.2 (3)	C12—C13—C14—C15	0.1 (4)
O1—C1—C2—C3	178.9 (3)	C13-C14-C15-C16	-0.7 (4)
C6—C1—C2—C3	0.1 (5)	C13—C14—C15—C17	-178.4 (3)
C1—C2—C3—C4	-0.3 (5)	C19—N2—C16—C15	1.7 (4)
C2—C3—C4—C5	0.1 (5)	C19—N2—C16—C11	-177.4 (3)
C3—C4—C5—C7	-179.0 (3)	C14—C15—C16—N2	-178.1 (3)
C3—C4—C5—C6	0.3 (4)	C17—C15—C16—N2	-0.2 (4)
C9—N1—C6—C5	0.5 (4)	C14-C15-C16-C11	0.9 (4)
Zn1—N1—C6—C5	176.3 (2)	C17—C15—C16—C11	178.9 (2)
C9—N1—C6—C1	-178.4 (3)	O2-C11-C16-N2	-0.8 (4)
Zn1—N1—C6—C1	-2.6 (3)	C12-C11-C16-N2	178.4 (2)
C7—C5—C6—N1	-0.1 (4)	O2-C11-C16-C15	-179.9 (2)
C4—C5—C6—N1	-179.4 (3)	C12-C11-C16-C15	-0.7 (4)
C7—C5—C6—C1	178.8 (3)	C14—C15—C17—C18	177.0 (3)
C4—C5—C6—C1	-0.6 (4)	C16—C15—C17—C18	-0.8 (4)
O1-C1-C6-N1	0.4 (4)	C15—C17—C18—C19	0.5 (5)
C2-C1-C6-N1	179.3 (3)	C16—N2—C19—C18	-2.0 (4)
O1—C1—C6—C5	-178.6 (3)	C16—N2—C19—C20	176.8 (3)
C2—C1—C6—C5	0.4 (4)	C17—C18—C19—N2	0.9 (4)
C6—C5—C7—C8	0.1 (4)	C17—C18—C19—C20	-177.8 (3)
C4—C5—C7—C8	179.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O2—H2O…O1	0.84 (1)	1.70(1)	2.534 (3)	177 (4)
O3—H3O…Cl1 ⁱ	0.84 (1)	2.47 (3)	3.239 (4)	153 (5)
N2—H2N…O3	0.88 (1)	1.87 (2)	2.727 (4)	163 (3)
Symmetry codes: (i) $x+1$, y , z .				

